Problema fácil: Sea E un punto arbitrario sobre el lado AC del triángulo ABC. Por el vértice B tracemos una recta arbitraria l. Por E, se traza una recta paralela a BC que corta a l en el punto N. También por E, se traza una recta paralela a AB que corta a l en el punto M. Demuestra que AN es parelelo a CM.
Problema también fácil: Sean C1 y C2 dos circunferencias tangentes exteriormente en P, con centros O1 y O2, respectivamente. Las rectas L1 y L2 son las tangentes a C2 y C1, respectivamente, que pasan por los centros O1 y O2, respectivamente. Demuestra que P está en la bisectriz de alguno de los ángulos formados por L1 y L2.